“Hadoop”:

A Distributed Architecture, FileSystem, & MapReduce

L
[N
. \(/ T \ »’é,
T K e 21/
,‘4.‘- » k‘ GN T L)
X J ¢ g
» y ‘ \ a =

C - ";'
H. Andrew Schwartz
e o)

| N ‘
=
Y CSE545

L =Py .
e ~--Spring 2022
o

X A

b vC

) e .

. > 2 : ".-"\“

k_ a \ -. - .)

Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

/7 AN

Dato Frameworke Algorithme and Analyces

g/mf/a.k;t Y §' earch

Hadoop File System Shark Hypothesic Teeting

Streaming Graph Analycis

MapRedvce

7 y Recommendation gggtemg
ensorflow
Dee,b learm‘ng

Big Data Analytics, The Class

Big Data Analytics, The Class

Classical Data Analytics

Classical Data Analytics

CPU

}

Memory -
(64 GB) 7
— TN

¥_"/
Disk

\

Classical Data Analytics

CPU

}

Memory
(64 GB) W

— D

— ——

I|)isk e

Classical Data Analytics

CPU

}

Memory
(64 GB) W

Inz]

|O Bounded

Reading a word from disk versus main memory: 10° slower!

Reading many contiguously stored words
is faster per word, but fast modern disks
still only reach 150MB/s for sequential reads.

|O Bounded

Reading a word from disk versus main memory: 10° slower!

Reading many contiguously stored words
is faster per word, but fast modern disks
still only reach 150MB/s for sequential reads.

|O Bound: biggest performance bottleneck is reading / writing to disk.

ctarts around 100 GBe: ~10 minutes just to read
200 [B¢: ~20,000 minutec = 13 days

Classical Big Data

CPU []] n "
Classical focus: efficient use of disk.

e.g. Apache Lucene / Solr

Disk Classical limitation: Still bounded when
needing to process all of a large file.

Classical Big Data

How to solve?

Classical limitation: Still bounded when
needing to process all of a large file.

Distributed Architecture

e

Ra‘/ Radk 2

Switch

~1Gbps

S

Switch
~10Gbps

pd

Switch
~1Gbps

S

CPU

CPU CPU
Memory Memory
— —
NS e—] NS e—]
Disk Disk
N~ N~

Memory

CPU

Disk

CPU CPU
Memory Memory
— —
NS e—] NS e—]
Disk Disk
N~ N~

Memory

Disk

Distributed Architecture

In reality, modern setups often have multiple cpus and disks
per server, but we will model as if one machin
per cpu-disk pair.

Switch
~1Gbps
CPU CPU CPU CPU CPU
- Memory Memory

<> <>
Disk W ... | Disk Disk W ... | Disk
<]
. S~

Distributed Architecture (Cluster)

e

Ra‘/ Radk 2

Switch

~1Gbps

S

Switch
~10Gbps

pd

Switch
~1Gbps

S

CPU

CPU CPU
Memory Memory
— —
NS e—] NS e—]
Disk Disk
N~ N~

Memory

CPU

Disk

CPU CPU
Memory Memory
— —
NS e—] NS e—]
Disk Disk
N~ N~

Memory

Disk

Distributed Architecture (Cluster)

Challenges for 10 Cluster Computing

1. Nodes fail
1in 1000 nodes fail a day

2. Network is a bottleneck
Typically 1-10 Gb/s throughput

3. Traditional distributed programming is
often ad-hoc and complicated

Distributed Architecture (Cluster)

Challenges for 10 Cluster Computing

1. Nodes fall
1in 1000 nodes fail a day
Duplicate Data

2. Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than
data to nodes.

3. Traditional distributed programming is
often ad-hoc and complicated
Stipulate a programming system that
can easily be distributed

Distributed Architecture (Cluster)

Challenges for 10 Cluster Computing
1.

Nodes fail
1in 1000 nodes fail a day
Duplicate Data -

Network is a bottleneck _
Typically 1-10 Gb/s throughput HDFS with
Bring computation to nodes, rather thany _ MapReduce

data to nodes.

Traditional distributed programming is

often ad-hoc and complicated /
Stipulate a programming system that

can easily be distributed

accomplishes all!

Distributed Filesystem

[he effectivenese of MapReduce, Spark, and other
distribvted procescing systems is in part simply due to
uce of a distributed filesystem!

Distributed Filesystem

Characteristics for Big Data Tasks
Large files (i.e. >100 GB to TBs)
Reads are most common

No need to update in place
(append preferred)

CPU

INFO | buserver 2012711711 86:52:22 INFO: No default wek
INFO buserver 2012711711 @6: 22 Nov 11, 2612 12:52:7
INFO buserver 28 1711 808:52:22 INFO: Initializing S “A

- emory

INFO
INFO
INFO

INFO: Initializi

Nov 11 2012 12 23
INFO: Starting Coyot
Nov 11, 2012 12:52:3

I
I

INFO | buserver | 2€ 1 86 Nouv 11, 2812 12:52:¢
I ¥ ' ;
|
I

@ Add to Cart

or 1-Click Checkout
Buy now with 1-Click”

Distributed Filesystem

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

D iStri bUted F i IeS) Hadoop” was vomed after a

toy elephant belonging to Doug

(e.g. Apache HadoopDFS, GoogleFS, E Cutting¢ son. Cutting was one

of Hadoop’e creators.
C, D: Two different files

https://opensource.com/life/14/8/intro
-apache-hadoop-big-data

Distributed Filesystem

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files; break into chunks (or "partitions"):

Distributed Filesystem

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

chunk server 1 chunk server 2 chunk server 3 chunk server n

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

Distributed Filesystem

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

chunk server 1 chunk server 2 chunk server 3 chunk server n

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

Distributed Filesystem

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

| W e Wl _ o _| B L, i B T e I
: CO C1 I : CQ C5 I : CO C5 |
;] 'l :] ' |
| | |

G | G ' S "" Co |i
i o e - e - S ey J
chunk server 1 chunk server 2 chunk server 3 chunk server n

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

Distributed Filesystem

Chunk servers (on Data Nodes)

File is split into contiguous chunks

Typically each chunk is 16-64MB
Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

Components of a Distributed Filesystem

Chunk servers (on Data Nodes)
File is split into contiguous chunks
Typically each chunk is 16-64MB
Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

Stores metadata about where files are stored

Might be replicated or distributed across data nodes.

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

Components of a Distributed Filesystem

Chunk servers (on Data Nodes)
File is split into contiguous chunks
Typically each chunk is 16-64MB
Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

Stores metadata about where files are stored

Might be replicated or distributed across data nodes.

Talks to master to find chunk servers

Connects directly to chunk servers to access data

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

Distributed Architecture (Cluster)

Challenges for 10 Cluster Computing

1. Nodes fall
1in 1000 nodes fail a day
Duplicate Data (Distributed FS)

2. Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than
data to nodes.

3. Traditional distributed programming is
often ad-hoc and complicated
Stipulate a programming system that
can easily be distributed

What is MapReduce

noun.1 - A style of programming

input chunks => map tasks | group by keys | reduce tasks => output

“l”

is the linux “pipe” symbol: passes stdout from first process to stdin of next.

What is MapReduce

noun.1 - A style of programming
input chunks => map tasks | group by keys | reduce tasks => output
“l”

is the linux “pipe” symbol: passes stdout from first process to stdin of next.

E.g. counting words:

tokenize(document) | sort | uniq -c

What is MapReduce

noun.1 - A style of programming
input chunks => map tasks | group by keys | reduce tasks => output
‘I is the linux “pipe” symbol: passes stdout from first process to stdin of next.
E.g. counting words:

tokenize(document) | sort | uniq -c

noun.2 - A system that distributes MapReduce style programs across a
distributed file-system.

(e.g. Google’s internal “MapReduce” or apache.hadoop.mapreduce with hdfs)

What is MapReduce

Keys with all
Key—value their values

pairs (k, [v, w,...])

Input S (k.v)
chunks \

Combined

e
\ output

gy

Map Group
taSkS by keys

Reduce
tasks

What is MapReduce

Keys with all
Key—value their values
pairs (k, [v, w,...])

(k,V)

Input .
ChunkS \

—— -
Combined

\ output

extract what

— /

you care

about.

i Group

line => (k, v) ap Bliese

Reduce
tasks

What is MapReduce

Keys with all
Key—value their values
pairs (k, [v, w,...])
Input — (k.v)

ChunkS \

sort and
shuffle

Combined
output

many (k, v) =>

extract what (k, [v1, v2]), ... |

you care R = sail
about.

|\/|ap Group

by keys

Reduce
tasks

What is MapReduce

Input
chunks

extract what
you care
about.

Keys with all
Key—value their values
pairs (k, [v, w,...])
%
-
sort and ((())::;)J?ed
shuffle
\
/ —
aggregate,
summarize
Wi Group
a p by keys

Reduce

What is MapReduce

Eacy as 1, 2, 3/
Step 1: Map Step 2: Sort / Group by Step 3: Reduce

What is MapReduce

Ea;’y ac 1, 2, 3/

Step 1: Map Step 2: Sort / Group by Step 3: Reduce
Input . Output
key-value pairs Intermediate Key-value groups key-value pairs

key-value pairs

iz, A SEEE=9®
k @ Group re uce

AR O oN >0

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

(1) The Map Step

Input Intermediate
key-value pairs key-value pairs

N\

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

(2) The Sort/ Group-by Step

Intermediate
key-value pairs

J SARJ |
sﬁi E G;okip ’ / / / '

> 4 <'<>E

(Leskovec at al., 2014; http://www.mmds.org/)

Key-value groups

http://www.mmds.org/

(3) The Reduce Step

Output
Key-value groups key-value pairs

@ /] @
&/ =e

7 Od

http://www.mmds.org/

What is MapReduce

Ea;’y ac 1, 2, 3/

Step 1: Map Step 2: Sort / Group by Step 3: Reduce
Input . Output
key-value pairs Intermediate Key-value groups key-value pairs

key-value pairs

iz, A SEEE=9®
k @ Group re uce

AR O oN >0

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

What is MapReduce

Map: (k,v) -> (k’, v')*
(Written by programmer)

Group by key: (k,’, v,'), (K,, v.,)), ... => (K.', (v.), V', ...),

(system handles) (k2’, (v1’, V', ..., ...

Reduce: (K, (v,’, V', ...)) -> (K, v')*
(Written by programmer)

Example: Word Count

tokenize(document) | sort | uniq -c

Example: Word Count

tokenize(document) | sort | uniq -c

_ A

Map: extract
what you sort and Reduce:

care about. shuffle aggregate,
summarize

Example: Word Count

The crew of the space
shuttle Endeavor recently
retuned to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the

recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
"The work we're doing now
-- the robotics we're doing -
- is what we're going to

Blg document (Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

The crew of the space
shuttle Endeavor recently
retumed to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the

Dextre bot is the first step in
a long-term space-based
man/mache partnership.
"The work we're doing now
-- the robotics we're doing -
- is what we're going to

Big document

Provided by the
programmer

MAP:

Read input and
produces a set of
key-value pairs

(The, 1)
(crew, 1)

(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)

(key, value)

The crew of the space
shuttle Endeavor recently
retumed to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the

recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
"The work we're doing now
-- the robotics we're doing -
- is what we're going to

Big document

Provided by the
programmer

MAP:

Read input and
produces a set of
key-value pairs

(The, 1)
(crew, 1)

(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)

(key, value)

Group by key:
Collect all pairs
with same key

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

(key, value)

The crew of the space
shuttle Endeavor recently
retumed to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the

Dextre bot is the first step in
a long-term space-based
man/mache partnership.
"The work we're doing now
-- the robotics we're doing -
- is what we're going to

Big document

Provided by the
programmer

MAP:

Read input and
produces a set of
key-value pairs

(The, 1)
(crew, 1)

(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)

(key, value)

Group by key:
Collect all pairs
with same key

(crew, 1)
(crew, 1)
(space, 1)
(the, 1)
(the, 1)
(the, 1)
(shuttle, 1)
(recently, 1)

(key, value)

Provided by the
programmer

Reduce:
Collect all values
belonging to the

key and output

(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)

(key, value)

(Leskovec at al., 2014;
http://www.mmds.org/)

Chunks

The crew of the space
shuttle Endeavor recently
retumed to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the

recent assembly of the
Dextre bot is the first step in
a long-term space-based

man/mache partnership.
"The work we're doing now
-- the robotics we're doing -
- is what we're going to

Big document

Provided by the
programmer

MAP:

Read input and
produces a set of
key-value pairs

(The, 1)
(crew, 1)

(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)

(key, value)

Group by key:
Collect all pairs
with same key

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)

(recently, 1)

(key, value)

Provided by the
programmer

Reduce:
Collect all values
belonging to the

key and output

(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)

(key, value)

n
O
(O
Q
=
E
o
=
Q
-
O
Q
(%p)}
=
<=
®)

http://www.mmds.org/

Example: Word Count

@abstractmethod
def map(k, v):
pass

@abstractmethod
def reduce(k, vs):
pass

Example: Word Count (v1)

def map(k, v):
for w in tokenize(v):
yield (w,1)

def reduce(k, vs):
return len(vs)

Example: Word Count (v1)

. _
def map(k, v): — ____-- def tokenize(s):
#simple version

for w in tokenize(v):"~"~"""--1
i return s.split(€ ©)

yield (w,1)

def reduce(k, vs):
return len(vs)

Example: Word Count (v2)

def map(k, v):
counts = dict()
for w in tokenize(v):

—_

— counts each word within the chunk
(try/except is faster than
“if w in counts”)

Example: Word Count (v2)

def map(k, v):
counts = dict()
for w in tokenize(v):
try:
counts[w] += 1
except KeyError:
counts[w] =1
for item in counts.iteritems():
yield item

—_

— counts each word within the chunk
(try/except is faster than
“if w in counts”)

Example: Word Count (v2)

def map(k, v):
counts = dict()
for w in tokenize(v):
try:
counts[w] += 1
except KeyError:
counts[w] =1
for item in counts.iteritems():
yield item

—_

— counts each word within the chunk
(try/except is faster than
“if w in counts”)

def reduce(k, vs): sum of counts from different chunks
return (k, sum(vs))

Distributed Architecture (Cluster)

Challenges for 10 Cluster Computing

1. Nodes fall
1in 1000 nodes fail a day
Duplicate Data (Distributed FS)

2. Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than
data to nodes.

3. Traditional distributed programming is
often ad-hoc and complicated
Stipulate a programming system that
can easily be distributed

Distributed Architecture (Cluster)

Challenges for |O Cluster Computing

1. Nodes fail
1in 1000 nodes fail a day
Duplicate Data (Distributed FS)

2. Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than
data to nodes. (Sort and Shuffle)

3. Traditional distributed programming is
often ad-hoc and complicated
Stipulate a programming system that
can easily be distributed

Distributed Architecture (Cluster)

Challenges for |O Cluster Computing

1. Nodes fall
1in 1000 nodes fail a day
Duplicate Data (Distributed FS)

2. Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than
data to nodes. (Sort and Shuffle)

3. Traditional distributed programming is
often ad-hoc and complicated (Simply define a map
Stipulate a programming system that and reduce)
can easily be distributed

Example: Relational Algebra

Select

Project

Union, Intersection, Difference
Natural Join

Grouping

Example: Relational Algebra

Project

Union, Intersection, Difference

Grouping

Example: Relational Algebra

R(A1,A2,A3,...), Relation R, Attributes A,

return only those attribute tuples where condition C is true

Example: Relational Algebra

R(A1,A2,A3,...), Relation R, Attributes A,

return only those attribute tuples where condition C is true

def map(k, v): #v is list of attribute tuples: [(...,), (...,), ...]
r =[]
for t in v:
if t satisfies C:
r+= [(t, t)]
return r

Example: Relational Algebra

R(A1,A2,A3,...), Relation R, Attributes A,

return only those attribute tuples where condition C is true

def map(k, v): #v is list of attribute tuples: [(...,), (...,), ...]
r =[]
for t in v:
if t satisfies C:
r+= [(t, t)]
return r
def reduce(k, vs):
r =[]
for each v in vs:
r+= [(k, V)]
return r

Example: Relational Algebra

R(A1,A2,A3,...), Relation R, Attributes A,

return only those attribute tuples where condition C is true

def map(k, v): #v is list of attribute tuples
for t in v:
if t satisfies C:
yield (t, t)

def reduce(k, vs):
For each v in vs:
yield (k, v)

Example: Relational Algebra

Given R1 and R2 return Rjom

-- union of all pairs of tuples that match given attributes.

def map(k, v): #k \in {R1, R2}, v is (A, B) for R1, (B, C) for R2
#B are matched attributes

Example: Relational Algebra

Given R1 and R2 return R. .
Join

-- union of all pairs of tuples that match given attributes.
def map(k, v): #k \in {R1, R2}, v is (A, B) for R1, (B, C) for R2
#B are matched attributes

if k==’R1’:

(a, b) = v

return (b,(‘Rl’Ja))
if k==’R2’:

(b,c) = v

return (b,(‘RZ’Jc))

Example: Relational Algebra

Given R, and R, return Rjom
-- union of all pairs of tuples that match given attributes.

def map(k, v): #k \in {R1, R2}, v is (A, B) for R1, (B, C) for R2
#B are matched attributes

1f ﬁ;: i:):_ y def reduce(k, vs):
return (b, (‘R.” a)) rl, r2, rjn =[], [], []

if k==’R2’: Lo for (s, x) in vs: #separate rs
(b,c) = v if s == ‘R1’: rl.append(x)
return (b,(‘R?CC)) else: r2.append(x)

for a in rl: #join as tuple
for each ¢ in r2:
rin += (‘R (a, k, ¢)) #k is b
return rjn

Data Flow

Input

MAP:

Read input and
produces a set of
key-value pairs

Intermediate

Group by key:
Collect all pairs with

same key
(Hash merge, Shuffle,
Sort, Partition)

Reduce:

Collect all values
belonging to the
key and output

Big document

kl:vkl:vk2:wv

Grouped

Output

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

kl:v,v,v,v

v [k3:v,v

k4:v,v,v

k5:v

@5@5

ok

Data Flow

R Ao R o e Co SRR Ay |

(Leskovec at al., 2014; http://www.mmds.org/)

:- Map Task 1

|

|

|

|

|

|

1| klivklv k2w kl:wv

| Partitioning Function

S
[—— == -
I Sort and Group |
1| k2iv | kdwwy | kS |l
I |
I |
I |
I I
I |
I I
I Reduce Task 1 _:

Map Task 2

¢

©

k3:v kd:wv

kd:v k5:v

Partitioning Function

———————— -
Map Task 3 |

|

|

|

|

|

|

kd:v kl:v k3:v |
Partitioning Function I
________ -

Sort and Group
klvyvyy | k3vy

50

Reduce Task 2_l

http://www.mmds.org/

Data Flow

U= —S0es ciem —alem mem = e D ki i S et e = f e Seree Suies St
| Map Task | I | Map Task 2 I | Map Task 3 I
| L b '
| L L :
| I 1 I |] | | 1 I
| |
Programmef (j) (i) (i) : : (i) (:) : : (j) (i) |
1 L J 4 Y } 1 Y Y 4 1 Y L 4 i
1| klivklv k2w klv] 1| k3o kduv kdwv kS |l I kd v kl:v k3w |
| Partitioning Function | | Partitioning Function I | Partitioning Function I
o T e e D e e et~y | (N o et e e
P -~
- ”
hash

Sort and Group
klwvvvy | k3vy

Sort and Group

r
I
| kd:v vy
|
Programmer |<§> Q%) @t)
|
I
I
I
I

Reduce Task 1

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

Data Flow

DFS —=> Map = Map’s Local FS => Reduce => DFS

Data Flow

MapReduce system handles:

e Partitioning
e Scheduling map / reducer execution

e Group by key

e Restarts from node failures

e [nter-machine communication

Data Flow

DFS [—> MapReduce C—)DFS

e Schedule map tasks near physical storage of chunk
e [ntermediate results stored locally
e Master / Name Node coordinates

Data Flow

DFS [—> MapReduce C—)DFS

e Schedule map tasks near physical storage of chunk
e [ntermediate results stored locally

e Master / Name Node coordinates

o Task status: idle, in-progress, complete
o Receives location of intermediate results and schedules with reducer
o Checks nodes for failures and restarts when necessary

m All map tasks on nodes must be completely restarted

m Reduce tasks can pickup with reduce task failed

Data Flow

DFS [—> MapReduce C—)DFS

e Schedule map tasks near physical storage of chunk
e [ntermediate results stored locally

e Master / Name Node coordinates

o Task status: idle, in-progress, complete
o Receives location of intermediate results and schedules with reducer
o Checks nodes for failures and restarts when necessary

m All map tasks on nodes must be completely restarted

m Reduce tasks can pickup with reduce task failed

DFS [=) MapReduce C=) DFS [=> MapReduce =) DFS

Data Flow

Skew: The degree to which certain tasks end up taking much
longer than others.

Handled with:

e More reducers than reduce tasks
e More reduce tasks than nodes

Data Flow

Key Question: How many Map and ,Qea'ucejaéc?

M: map tasks, R: reducer tasks

Data Flow

Key Question: How many Map and ,Qea'ucejaéc?

M: map tasks, R: reducer tasks

Answer: 1) If possible, one chunk per map task, and
2) M >> |nodes| == |cores|
(better handling of node Failures, better load éa/o.ucing]
3)R<=M
(reducee number of parte ctored in DFS)

Data Flow Reduce Task

version 1: few reduce tasks
(same number of reduce tasks as nodes)

ime
Reduce tasks represented by

time to complete task
(some tasks take much longer)

Data Flow

version 1: few reduce tasks
(same number of reduce tasks as nodes)

ime
Reduce tasks represented by

time to complete task
(some tasks take much longer)

Reduce Task

version 2: more reduce tasks
(more reduce tasks than nodes)

Ime
Reduce tasks represented by
time to complete task

(some tasks take much longer)

Data Flow Reduce Task

version 1: few reduce tasks version 2: more reduce tasks
(same number of reduce tasks as nodes) (more reduce tasks than nodes)

Last task
completed

Ime Ime time
Reduce tasks represented by Reduce tasks represented by

time to complete task time to complete task (the last task now completes
(some tasks take much longer) (some tasks take much longer) much earlier)

Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving (key, value) pairs

Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving (key, value) pairs

Ultimate Goal: wall-clock Time.

Communication Cost Model

How to assess performance?
(1) Computation: Map + Reduce + System Tasks

e Mappers and reducers often single pass O(n) within node

e System: sort the keys is usually most expensive

e Even if map executes on same node, disk read usually
dominates

e In any case, can add more nodes

Communication Cost Model

How to assess performance?

(2) Communication: Moving key, value pairs

Often dominates computation.
e Connection speeds: 1-10 gigabits per sec;
HD read: 50-150 gigabytes per sec

e Even reading from disk to memory typically takes longer than
operating on the data.

Communication Cost Model

How to assess performance?

Communication Cost = input size +

(sum of size of all map-to-reducer files)

(2) Communication: Moving key, value pairs

Often dominates computation.
e Connection speeds: 1-10 gigabits per sec;
HD read: 50-150 gigabytes per sec
e Even reading from disk to memory typically takes longer than
operating on the data.

Communication Cost Model

How to assess performance?

Communication Cost = input size +

(sum of size of all map-to-reducer files)

(2) Communication: Moving key, value pairs

Often dominates computation.

Connection speeds: 1-10 gigabits per sec;

HD read: 50-150 gigabytes per sec

Even reading from disk to memory typically takes longer than
operating on the data.

Output from reducer ignored because it's either small (finished
summarizing data) or being passed to another mapreduce job.

Communication Cost: Natural Join

R, S: Relations (Tables) R(A, B) x S(B, C)

Communication Cost = input size +

(sum of size of all map-to-reducer files)

DFSE)Map LpLocalFS D)Network EYReduce EYDFSE) ?

Communication Cost: Natural Join

R, S: Relations (Tables) R(A, B) x S(B, C)

Communication Cost = input size +

(sum of size of all map-to-reducer files)

def map(k, v):
if k=="R1”:
(a, b) =V
yield (b,(RLa))
if k=="R2”:
(bJC) =V
yield (b,(RLc))

def reduce(k, vs):
rl, r2 =[], []
for (rel, x) in vs: #separate rs
if rel == ‘R’: rl.append(x)
else: r2.append(x)
for a in rl: #join as tuple
for each ¢ in r2:
yield (Rﬁﬁm, (a, k, c)) #k is

Communication Cost: Natural Join

R, S: Relations (Tables)

R(A, B) x S(B, C)

Communication Cost = input size +

(sum of size of all map-to-reducer files)

= [R1] + [R2] + ([R1] + |R2])

= O(IR1] +|R2])

def map(k, v):
if k=="R1”:
(a, b) =V
yield (b,(RLa))
if k=="R2”:
(bJC) =V
yield (b,(RLc))

def reduce(k, vs):

rl, r2 =[], []

for (rel, x) in vs: #separate rs
if rel == ‘R’: rl.append(x)
else: r2.append(x)

for a in rl: #join as tuple
for each ¢ in r2:

yield (Rﬁﬁm, (a, k, c)) #k is

Exercise:

Caleutate Commonication Cost for
‘Matrix /Mu/t/,b/fca.ﬁan with One /V/a,b,Qec{ace ¢ fe,b 7
(cee MMDS cection 2.3.10)

MapReduce: Final Considerations

e Performance Refinements:
o Combiners (like word count version 2 but done via reduce)
m Run reduce right after map from same node before passing to
reduce (MapTask can execute)
m Reduces communication cost

Requires commutative and associative reducer function.

MapReduce: Final Considerations

e Performance Refinements:
o Combiners (like word count version 2 but done via reduce)
m Run reduce right after map from same node before passing to
reduce (MapTask can execute)
m Reduces communication cost

o Backup tasks (aka speculative tasks)
m Schedule multiple copies of tasks when close to the end to mitigate
certain nodes running slow.

o Qverride partition hash function to organize data
E.g. instead of hash(url) use hash(hostname(url))

