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     Big Data Analytics, The Class
Goal: Generalizations

A model or summarization of the data. 

Data Frameworks Algorithms and Analyses

Hadoop File System

MapReduce

Spark

Tensorflow

Similarity Search

Recommendation Systems
Graph Analysis

Deep Learning

Streaming
Hypothesis Testing
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Reading a word from disk versus main memory: 105 slower!

Reading many contiguously stored words 
is faster per word, but fast modern disks
still only reach 150MB/s for sequential reads.

 

IO Bounded



Reading a word from disk versus main memory: 105 slower!

Reading many contiguously stored words 
is faster per word, but fast modern disks
still only reach 150MB/s for sequential reads.

IO Bound: biggest performance bottleneck is reading / writing to disk.

starts around 100 GBs: ~10 minutes just to read
200 TBs: ~20,000 minutes = 13 days

 

IO Bounded



Classical focus: efficient use of disk. 
e.g. Apache Lucene / Solr

Classical limitation: Still bounded when 
needing to process all of a large file. 
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Classical focus: efficient use of disk. 
e.g. Apache Lucene / Solr

Classical limitation: Still bounded when 
needing to process all of a large file. 

How to solve? 

Classical Big Data
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In reality, modern setups often have multiple cpus and disks 
per server, but we will model as if one machine
per cpu-disk pair. 
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Challenges for IO Cluster Computing

1. Nodes fail
1 in 1000 nodes fail a day

2. Network is a bottleneck
Typically 1-10 Gb/s throughput 

3. Traditional distributed programming is 
often ad-hoc and complicated

Distributed Architecture (Cluster)



Challenges for IO Cluster Computing
1. Nodes fail

1 in 1000 nodes fail a day
Duplicate Data

2. Network is a bottleneck
Typically 1-10 Gb/s throughput 
Bring computation to nodes, rather than 
data to nodes. 

3. Traditional distributed programming is 
often ad-hoc and complicated
Stipulate a programming system that 
can easily be distributed
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Challenges for IO Cluster Computing
1. Nodes fail

1 in 1000 nodes fail a day
Duplicate Data

2. Network is a bottleneck
Typically 1-10 Gb/s throughput 
Bring computation to nodes, rather than 
data to nodes. 

3. Traditional distributed programming is 
often ad-hoc and complicated
Stipulate a programming system that 
can easily be distributed

Distributed Architecture (Cluster)

HDFS with 
MapReduce 

accomplishes all!



The effectiveness of MapReduce, Spark, and other 
distributed processing systems is in part simply due to 
use of a distributed filesystem! 

Distributed Filesystem



Characteristics for Big Data Tasks
Large files (i.e. >100 GB to TBs)
Reads are most common
No need to update in place 
(append preferred)

CPU
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Disk

Distributed Filesystem



(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

Distributed Filesystem

C D

https://opensource.com/life/14/8/intro
-apache-hadoop-big-data



(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

Distributed Filesystem

C D

“Hadoop” was named after a 
toy elephant belonging to Doug 
Cutting’s son. Cutting was one 
of Hadoop’s creators.

https://opensource.com/life/14/8/intro
-apache-hadoop-big-data



(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files; break into chunks (or "partitions"): 

Distributed Filesystem
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(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

(Leskovec at al., 2014; http://www.mmds.org/)

chunk server 1 chunk server 2 chunk server 3 chunk server n

Distributed Filesystem

http://www.mmds.org/
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(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

(Leskovec at al., 2014; http://www.mmds.org/)

chunk server 1 chunk server 2 chunk server 3 chunk server n

Distributed Filesystem

http://www.mmds.org/


Chunk servers (on Data Nodes)
File is split into contiguous chunks

Typically each chunk is 16-64MB

Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

(Leskovec at al., 2014; http://www.mmds.org/)
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Chunk servers (on Data Nodes)
File is split into contiguous chunks

Typically each chunk is 16-64MB

Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

Name node (aka master node)
Stores metadata about where files are stored

Might be replicated or distributed across data nodes.

(Leskovec at al., 2014; http://www.mmds.org/)
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Chunk servers (on Data Nodes)
File is split into contiguous chunks

Typically each chunk is 16-64MB

Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

Name node (aka master node)
Stores metadata about where files are stored

Might be replicated or distributed across data nodes.

Client library for file access
Talks to master to find chunk servers

Connects directly to chunk servers to access data

(Leskovec at al., 2014; http://www.mmds.org/)

Components of a Distributed Filesystem

http://www.mmds.org/


Challenges for IO Cluster Computing
1. Nodes fail

1 in 1000 nodes fail a day
Duplicate Data (Distributed FS)

2. Network is a bottleneck
Typically 1-10 Gb/s throughput 
Bring computation to nodes, rather than 
data to nodes. 

3. Traditional distributed programming is 
often ad-hoc and complicated
Stipulate a programming system that 
can easily be distributed

Distributed Architecture (Cluster)



noun.1  -  A style of programming

input chunks => map tasks  |     group_by keys   |     reduce tasks => output

“|”  is the linux “pipe” symbol: passes stdout from first process to stdin of next.

What is MapReduce
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“|”  is the linux “pipe” symbol: passes stdout from first process to stdin of next.

E.g. counting words:

tokenize(document) | sort | uniq -c 
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noun.1  -  A style of programming

input chunks => map tasks  |     group_by keys   |     reduce tasks => output

“|”  is the linux “pipe” symbol: passes stdout from first process to stdin of next.

E.g. counting words:

tokenize(document) | sort | uniq -c 

noun.2 - A system that distributes MapReduce style programs across a 
distributed file-system. 

(e.g. Google’s internal “MapReduce” or apache.hadoop.mapreduce with hdfs)

What is MapReduce



What is MapReduce



Map

extract what 
you care 
about.

line => (k, v)

What is MapReduce



Map

extract what 
you care 
about.

sort and 
shuffle

many (k, v) =>
(k, [v1, v2]), ...

What is MapReduce



Map

extract what 
you care 
about.

Reduce

aggregate, 
summarize

sort and 
shuffle

What is MapReduce



What is MapReduce
Easy as 1, 2, 3!

Step 1: Map  Step 2: Sort / Group by            Step 3: Reduce



(Leskovec at al., 2014; http://www.mmds.org/)

What is MapReduce
Easy as 1, 2, 3!

Step 1: Map  Step 2: Sort / Group by            Step 3: Reduce

http://www.mmds.org/


(Leskovec at al., 2014; http://www.mmds.org/)

(1) The Map Step

http://www.mmds.org/


(Leskovec at al., 2014; http://www.mmds.org/)

(2) The Sort / Group-by Step

http://www.mmds.org/


(Leskovec at al., 2014; http://www.mmds.org/)

(3) The Reduce Step

http://www.mmds.org/


(Leskovec at al., 2014; http://www.mmds.org/)

What is MapReduce
Easy as 1, 2, 3!

Step 1: Map  Step 2: Sort / Group by            Step 3: Reduce

http://www.mmds.org/


Map:  (k,v) -> (k’, v’)*
(Written by programmer)

Group by key: (k1’, v1’), (k2’, v2’), ... -> (k1’, (v1’, v’, …), 
(system handles) (k2’, (v1’, v’, …), …

Reduce: (k’, (v1’, v’, …)) -> (k’, v’’)*
(Written by programmer)

What is MapReduce



tokenize(document) | sort | uniq -c 

Example: Word Count



tokenize(document) | sort | uniq -c

Map: extract 
what you 
care about.

Reduce: 
aggregate, 
summarize

sort and 
shuffle

Example: Word Count



(Leskovec at al., 2014; http://www.mmds.org/)

Example: Word Count

http://www.mmds.org/








Chunks

(Leskovec at al., 2014; 
http://www.mmds.org/)

http://www.mmds.org/


@abstractmethod
def map(k, v): 

pass

@abstractmethod
def reduce(k, vs):

pass

Example: Word Count



def map(k, v):
for w in tokenize(v):

yield (w,1)

def reduce(k, vs):
return len(vs) 

Example: Word Count (v1)



def map(k, v):
for w in tokenize(v):

yield (w,1)

def reduce(k, vs):
return len(vs) 

def tokenize(s):
#simple version
return s.split(‘ ‘)

Example: Word Count (v1)



def map(k, v):
counts = dict()
for w in tokenize(v):

counts each word within the chunk
(try/except is faster than 
“if w in counts”)

Example: Word Count (v2)



def map(k, v):
counts = dict()
for w in tokenize(v):

try: 
counts[w] += 1

except KeyError:
counts[w] = 1

for item in counts.iteritems():
yield item

counts each word within the chunk
(try/except is faster than 
“if w in counts”)

Example: Word Count (v2)



def map(k, v):
counts = dict()
for w in tokenize(v):

try: 
counts[w] += 1

except KeyError:
counts[w] = 1

for item in counts.iteritems():
yield item

def reduce(k, vs):
return (k, sum(vs) )

counts each word within the chunk
(try/except is faster than 
“if w in counts”)

sum of counts from different chunks

Example: Word Count (v2)



Challenges for IO Cluster Computing
1. Nodes fail

1 in 1000 nodes fail a day
Duplicate Data (Distributed FS)

2. Network is a bottleneck
Typically 1-10 Gb/s throughput 
Bring computation to nodes, rather than 
data to nodes. 

3. Traditional distributed programming is 
often ad-hoc and complicated
Stipulate a programming system that 
can easily be distributed

Distributed Architecture (Cluster)
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Challenges for IO Cluster Computing
1. Nodes fail

1 in 1000 nodes fail a day
Duplicate Data (Distributed FS)

2. Network is a bottleneck
Typically 1-10 Gb/s throughput 
Bring computation to nodes, rather than 
data to nodes. (Sort and Shuffle)

3. Traditional distributed programming is 
often ad-hoc and complicated
Stipulate a programming system that 
can easily be distributed

Distributed Architecture (Cluster)

(Simply define a map 
     and reduce)
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Natural Join

Grouping

Example: Relational Algebra
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Select

R(A1,A2,A3,...), Relation  R, Attributes A*

return only those attribute tuples where condition C is true

Example: Relational Algebra



Select
R(A1,A2,A3,...), Relation  R, Attributes A*
return only those attribute tuples where condition C is true
def map(k, v): #v is list of attribute tuples: [(...,), (...,), ...]
    r = []

for t in v:
if t satisfies C:

r += [(t, t)]
return r

Example: Relational Algebra



Select
R(A1,A2,A3,...), Relation  R, Attributes A*
return only those attribute tuples where condition C is true
def map(k, v): #v is list of attribute tuples: [(...,), (...,), ...]
    r = []

for t in v:
if t satisfies C:

r += [(t, t)]
return r

def reduce(k, vs):
  r = []
  for each v in vs:

    r += [(k, v)]

  return r

Example: Relational Algebra



Select

R(A1,A2,A3,...), Relation  R, Attributes A*

return only those attribute tuples where condition C is true

def map(k, v): #v is list of attribute tuples
for t in v:

if t satisfies C:
yield (t, t)

def reduce(k, vs):

For each v in vs:

yield (k, v)

Example: Relational Algebra



Natural Join
Given R1 and R2 return Rjoin 

                                              -- union of all pairs of tuples that match given attributes.
def map(k, v): #k \in {R1, R2}, v is (A, B) for R1, (B, C) for R2                 

#B are matched attributes

Example: Relational Algebra



Natural Join
Given R1 and R2 return Rjoin 

                                              -- union of all pairs of tuples that match given attributes.
def map(k, v): #k \in {R1, R2}, v is (A, B) for R1, (B, C) for R2
                 #B are matched attributes

if k==’R1’:
(a, b) = v
return (b,(‘R

1
’
,
a))

if k==’R2’:
(b,c) = v
return (b,(‘R

2
’
,
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Example: Relational Algebra



Natural Join
Given R1 and R2 return Rjoin 

                                              -- union of all pairs of tuples that match given attributes.
def map(k, v): #k \in {R1, R2}, v is (A, B) for R1, (B, C) for R2
                 #B are matched attributes

if k==’R1’:
(a, b) = v
return (b,(‘R

1
’
,
a))

if k==’R2’:
(b,c) = v
return (b,(‘R

2
’
,
c))

Example: Relational Algebra

def reduce(k, vs):

r1, r2, rjn = [], [], []

for (s, x) in vs: #separate rs

  if s == ‘R1’: r1.append(x)

  else: r2.append(x)

for a in r1: #join as tuple

  for each c in r2:

    rjn += (‘R
join

’, (a, k, c)) #k is b

 return rjn



Data Flow



(Leskovec at al., 2014; http://www.mmds.org/)

hash

Data Flow

http://www.mmds.org/


(Leskovec at al., 2014; http://www.mmds.org/)

Programmer

Programmer

hash

Data Flow

http://www.mmds.org/


DFS Map Map’s Local FS Reduce DFS

  Data Flow



MapReduce system handles:

● Partitioning

● Scheduling map / reducer execution

● Group by key

● Restarts from node failures

● Inter-machine communication

  Data Flow



DFS MapReduce  DFS

● Schedule map tasks near physical storage of chunk
● Intermediate results stored locally
● Master / Name Node coordinates

  Data Flow



DFS MapReduce  DFS

● Schedule map tasks near physical storage of chunk
● Intermediate results stored locally
● Master / Name Node coordinates

○ Task status: idle, in-progress, complete
○ Receives location of intermediate results and schedules with reducer
○ Checks nodes for failures and restarts when necessary

■ All map tasks on nodes must be completely restarted
■ Reduce tasks can pickup with reduce task failed

  Data Flow



DFS MapReduce  DFS

● Schedule map tasks near physical storage of chunk
● Intermediate results stored locally
● Master / Name Node coordinates

○ Task status: idle, in-progress, complete
○ Receives location of intermediate results and schedules with reducer
○ Checks nodes for failures and restarts when necessary

■ All map tasks on nodes must be completely restarted
■ Reduce tasks can pickup with reduce task failed

DFS MapReduce  DFS MapReduce  DFS

  Data Flow



Skew: The degree to which certain tasks end up taking much 
longer than others.

Handled with:

● More reducers than reduce tasks
● More reduce tasks than nodes

  Data Flow



Key Question: How many Map and Reduce jobs?

M: map tasks, R: reducer tasks

  Data Flow



Key Question: How many Map and Reduce jobs?

M: map tasks, R: reducer tasks

Answer: 1) If possible, one chunk per map task, and

   2) M  >>  |nodes|  ≈≈  |cores|

(better handling of node failures, better load balancing)
   3) R <= M

(reduces number of parts stored in DFS)

  Data Flow



Reduce Task

node1

node2

node3

node4

node5

Reduce tasks represented by 
time to complete task

(some tasks take much longer)

version 1: few reduce tasks
(same number of reduce tasks as nodes)

time

Data Flow



Reduce Task

node1

node2

node3

node4

node5

Reduce tasks represented by 
time to complete task

(some tasks take much longer)

node1

node2

node3

node4

node5

Reduce tasks represented by 
time to complete task

(some tasks take much longer)

version 1: few reduce tasks
(same number of reduce tasks as nodes)

version 2: more reduce tasks
(more reduce tasks than nodes)

timetime

Data Flow



Can 
redistribute 
these tasks to 
other nodes

Reduce Task

node1

node2

node3

node4

node5

Reduce tasks represented by 
time to complete task

(some tasks take much longer)

node1

node2

node3

node4

node5

Reduce tasks represented by 
time to complete task

(some tasks take much longer)

version 1: few reduce tasks
(same number of reduce tasks as nodes)

version 2: more reduce tasks
(more reduce tasks than nodes)

node1

node2

node3

node4

node5

timetimetime

(the last task now completes 
much earlier )

Last task 
completed

Data Flow



How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving (key, value) pairs

Communication Cost Model
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Ultimate Goal: wall-clock Time. 

Communication Cost Model



How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving key, value pairs

Ultimate Goal: wall-clock Time. 

● Mappers and reducers often single pass O(n) within node
● System: sort the keys is usually most expensive
● Even if map executes on same node, disk read usually 

dominates
● In any case, can add more nodes

Communication Cost Model



How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving key, value pairs

Ultimate Goal: wall-clock Time. 

Often dominates computation. 
● Connection speeds: 1-10 gigabits per sec; 

HD read: 50-150 gigabytes per sec
● Even reading from disk to memory typically takes longer than 

operating on the data.
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Ultimate Goal: wall-clock Time. 

Communication Cost = input size + 
(sum of size of all map-to-reducer files) 
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How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving key, value pairs

Ultimate Goal: wall-clock Time. 

Often dominates computation. 
● Connection speeds: 1-10 gigabits per sec; 

HD read: 50-150 gigabytes per sec
● Even reading from disk to memory typically takes longer than 

operating on the data.
● Output from reducer ignored because it’s either small (finished 

summarizing data) or being passed to another mapreduce job. 

Communication Cost = input size + 
(sum of size of all map-to-reducer files) 

Communication Cost Model



R, S: Relations (Tables)      R(A, B) ⨝ S(B, C)

Communication Cost = input size + 
(sum of size of all map-to-reducer files) 

DFS    Map     LocalFS     Network     Reduce     DFS     ?

(Anytime where MapReduce would need to write and read from disk a lot). 

Communication Cost: Natural Join



R, S: Relations (Tables)      R(A, B) ⨝ S(B, C)

Communication Cost = input size + 
(sum of size of all map-to-reducer files) 

def map(k, v): 
if k==”R1”:

(a, b) = v
yield (b,(R

1,
a))

if k==”R2”:
(b,c) = v
yield (b,(R

2,
c))

def reduce(k, vs):

r1, r2 = [], []

for (rel, x) in vs: #separate rs

if rel == ‘R’: r1.append(x)

else: r2.append(x)

for a in r1: #join as tuple

for each c in r2:

yield (R
join’

, (a, k, c)) #k is 

b

Communication Cost: Natural Join



R, S: Relations (Tables)      R(A, B) ⨝ S(B, C)

Communication Cost = input size + 
(sum of size of all map-to-reducer files) 

= |R1| + |R2| + (|R1| + |R2|)

= O(|R1| + |R2|)
def map(k, v): 

if k==”R1”:
(a, b) = v
yield (b,(R

1,
a))

if k==”R2”:
(b,c) = v
yield (b,(R

2,
c))

def reduce(k, vs):

r1, r2 = [], []

for (rel, x) in vs: #separate rs

if rel == ‘R’: r1.append(x)

else: r2.append(x)

for a in r1: #join as tuple

for each c in r2:

yield (R
join’

, (a, k, c)) #k is 

b

Communication Cost: Natural Join



Exercise: 

Calculate Communication Cost for 
“Matrix Multiplication with One MapReduce Step” 

(see MMDS section 2.3.10)



● Performance Refinements:
○ Combiners (like word count version 2 but done via reduce)

■ Run reduce right after map from same node before passing to 
reduce (MapTask can execute)

■ Reduces communication cost

Requires commutative and associative reducer function.

MapReduce: Final Considerations



● Performance Refinements:
○ Combiners (like word count version 2 but done via reduce)

■ Run reduce right after map from same node before passing to 
reduce (MapTask can execute)

■ Reduces communication cost

○ Backup tasks (aka speculative tasks)
■ Schedule multiple copies of tasks when close to the end to mitigate 

certain nodes running slow.

○ Override partition hash function to organize data
E.g. instead of hash(url) use hash(hostname(url))

MapReduce: Final Considerations


